Systemic regulation of leaf anatomical structure, photosynthetic performance, and high-light tolerance in sorghum.
نویسندگان
چکیده
Leaf anatomy of C3 plants is mainly regulated by a systemic irradiance signal. Since the anatomical features of C4 plants are different from that of C3 plants, we investigated whether the systemic irradiance signal regulates leaf anatomical structure and photosynthetic performance in sorghum (Sorghum bicolor), a C4 plant. Compared with growth under ambient conditions (A), no significant changes in anatomical structure were observed in newly developed leaves by shading young leaves alone (YS). Shading mature leaves (MS) or whole plants (S), on the other hand, caused shade-leaf anatomy in newly developed leaves. By contrast, chloroplast ultrastructure in developing leaves depended only on their local light conditions. Functionally, shading young leaves alone had little effect on their net photosynthetic capacity and stomatal conductance, but shading mature leaves or whole plants significantly decreased these two parameters in newly developed leaves. Specifically, the net photosynthetic rate in newly developed leaves exhibited a positive linear correlation with that of mature leaves, as did stomatal conductance. In MS and S treatments, newly developed leaves exhibited severe photoinhibition under high light. By contrast, newly developed leaves in A and YS treatments were more resistant to high light relative to those in MS- and S-treated seedlings. We suggest that (1) leaf anatomical structure, photosynthetic capacity, and high-light tolerance in newly developed sorghum leaves were regulated by a systemic irradiance signal from mature leaves; and (2) chloroplast ultrastructure only weakly influenced the development of photosynthetic capacity and high-light tolerance. The potential significance of the regulation by a systemic irradiance signal is discussed.
منابع مشابه
Effects of chilling and high light stress on phenolic metabolism and antioxidant activity of Aloe vera L. plants
High light (HL) can limit plant photosynthetic activity, growth and productivity. The HL effect was more pronounced in plants grown at low temperature. In order to determine the effects of chilling stress (4 0C) and light intensities (450 and 850 µmol m-2 s-1) on antioxidant defense system and phenolic metabolism of Aloe vera L., an experiment was conducted in a randomized complete block desi...
متن کاملInvolvement of phospholipase D and phosphatidic acid in the light-dependent up-regulation of sorghum leaf phosphoenolpyruvate carboxylase-kinase
The photosynthetic phosphoenolpyruvate carboxylase (C(4)-PEPC) is regulated by phosphorylation by a phosphoenolpyruvate carboxylase kinase (PEPC-k). In Digitaria sanguinalis mesophyll protoplasts, this light-mediated transduction cascade principally requires a phosphoinositide-specific phospholipase C (PI-PLC) and a Ca(2+)-dependent step. The present study investigates the cascade components at...
متن کاملSeasonal changes in photosynthesis, antioxidant systems and ELIP expression in a thermonastic and non-thermonastic Rhododendron species: A comparison of photoprotective strategies in overwintering plants
Leaves of overwintering evergreen rhododendrons are typically exposed to freezing temperatures and high light during winters which can potentially result in photon flux exceeding that required for photochemistry. This excess energy, if not dissipated as heat or fluorescence, may cause photooxidative damage to PSII. The goal of this study is to compare the photoprotection strategies during seaso...
متن کاملEffect of Sink Removal and Magnesium Spraying on Photosynthetic Pigments and Sugar Yield of Two Sweet Sorghum Cultivars
The ever-increasing problem of water scarcity in arid and semi-arid regions of Iran has necessitated the demand to replacement of sugar beet plantation by more water-use efficient plants. Sweet sorghum is one of the sugars plants with low water requirements that potentiates cost-effective sugar production in different regions. However, physiological aspects of sugar yield in this plant is not c...
متن کاملRegulation of Light Energy Distribution between Photosynthetic Pigment Systems; a Possible Role of Leaf Anatomy
Photosynthetic Pigments, Energy Distribution, Leaf Anatomy The complex anatomical structure of an intact leaf results in a distribution of photosynthetically active energy between photosynthetic pigments which is different from that observed in isolated chloroplasts. The variance is due mainly to scattering at the gas-liquid interface between cells and intercellular space which tends to increas...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Plant physiology
دوره 155 3 شماره
صفحات -
تاریخ انتشار 2011